Test8086:测试CPU型号{ Will always be 2 (386 or later) }
Test8087:测试协处理器{ Will always be 3 (387 or later) }
TestFDIV: 测试奔腾芯片是否有缺陷{ -1: 有缺陷, 0: 不能决定, 1: OK }
Q: How do I detect for a co-processor?
Q: How can I tell which CPU is being used?
A: Here is the short version. The problem here is that it doesn't detect the pentium.
var winFlags: LongInt;
begin
winFlags := GetWinFlags;
{ Get math coprocessor status }
If winFlags And WF_80x87 > 0 Then Caption := 'Present'
Else Caption := 'Not Present';
{ Get CPU type }
If winFlags And WF_CPU486 > 0 Then edit1.text := '486' {also pentium}
else If winFlags And WF_CPU386 > 0 Then edit1.text := '386'
else If winFlags And WF_CPU286 > 0 Then edit1.text := '286';
end;
Here is a version that will work with the pentium:
{ This code comes from Intel, and has been modified for Delphi's
inline assembler.
}
unit Cpu;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;
type
{ All the types currently known. As new types are created,
add suitable names, and extend the case statement in
the GetCpuType function.
}
TCPUType = (i8086CPU, i286CPU, i386CPU, i486CPU, iPentiumCPU);
TForm1 = class(TForm)
Edit1: TEdit;
Label1: TLabel;
BitBtn1: TBitBtn;
procedure FormCreate(Sender: TObject);
procedure BitBtn1Click(Sender: TObject);
private
{ Return the type of the current CPU }
function CpuType: TCPUType;
{ Return the type as a string }
function GetCPUType: String;
public
end;
var
Form1: TForm1;
{ Define the winFlags variable for 286 check }
winFlags: Longint;
implementation
{$R *.DFM}
{ Get CPU type }
function TForm1.GetCPUType: String;
var
kind: TCPUType;
begin
if winFlags and WF_CPU286 > 0 then
Result := '80286'
else
begin
kind := CpuType;
case kind of
i8086CPU:
Result := '8086';
i386CPU:
Result := '80386';
i486CPU:
Result := '80486';
iPentiumCPU:
Result := 'Pentium';
else
{ Try to be flexible for future cpu types, e.g., P6. }
Result := Format('P%d', [Ord(kind)]);
end;
end;
end;
{ Assembly function to get CPU type including Pentium and later }
function TForm1.CpuType: TCPUType; assembler;
asm
push DS
{ First check for an 8086 CPU }
{ Bits 12-15 of the FLAGS register are always set on the }
{ 8086 processor. }
pushf { save EFLAGS }
pop bx { store EFLAGS in BX }
mov ax,0fffh { clear bits 12-15 }
and ax,bx { in EFLAGS }
push ax { store new EFLAGS value on stack }
popf { replace current EFLAGS value }
pushf { set new EFLAGS }
pop ax { store new EFLAGS in AX }
and ax,0f000h { if bits 12-15 are set, then CPU }
cmp ax,0f000h { is an 8086/8088 }
mov ax, i8086CPU { turn on 8086/8088 flag }
je @@End_CpuType
{ 80286 CPU check }
{ Bits 12-15 of the FLAGS register are always clear on the }
{ 80286 processor. }
{ Commented out because 'pop ax' crashes it to the DOS prompt when running }
{ with a Delphi form on some Machines.}
{ or bx,0f000h } { try to set bits 12-15 }
{ push bx }
{ popf }
{ pushf }
{ pop ax } { This crashes Delphi programs on some machines }
{ and ax,0f000h } { if bits 12-15 are cleared, CPU=80286 }
{ mov ax, i286CPU } { turn on 80286 flag }
{ jz @@End_CpuType }
{ To test for 386 or better, we need to use 32 bit instructions,
but the 16-bit Delphi assembler does not recognize the 32 bit opcodes
or operands. Instead, use the 66H operand size prefix to change
each instruction to its 32-bit equivalent. For 32-bit immediate
operands, we also need to store the high word of the operand immediately
following the instruction. The 32-bit instruction is shown in a comment
after the 66H instruction.
}
{ i386 CPU check }
{ The AC bit, bit #18, is a new bit introduced in the EFLAGS }
{ register on the i486 DX CPU to generate alignment faults. }
{ This bit can not be set on the i386 CPU. }
db 66h { pushfd }
pushf
db 66h { pop eax }
pop ax { get original EFLAGS }
db 66h { mov ecx, eax }
mov cx,ax { save original EFLAGS }
db 66h { xor eax,40000h }
xor ax,0h { flip AC bit in EFLAGS }
dw 0004h
db 66h { push eax }
push ax { save for EFLAGS }
db 66h { popfd }
popf { copy to EFLAGS }
db 66h { pushfd }
pushf { push EFLAGS }
db 66h { pop eax }
pop ax { get new EFLAGS value }
db 66h { xor eax,ecx }
xor ax,cx { can't toggle AC bit, CPU=Intel386 }
mov ax, i386CPU { turn on 386 flag }
je @@End_CpuType
{ i486 DX CPU / i487 SX MCP and i486 SX CPU checking }
{ Checking for ability to set/clear ID flag (Bit 21) in EFLAGS }
{ which indicates the presence of a processor }
{ with the ability to use the CPUID instruction. }
db 66h { pushfd }
pushf { push original EFLAGS }
db 66h { pop eax }
pop ax { get original EFLAGS in eax }
db 66h { mov ecx, eax }
mov cx,ax { save original EFLAGS in ecx }
db 66h { xor eax,200000h }
xor ax,0h { flip ID bit in EFLAGS }
dw 0020h
db 66h { push eax }
push ax { save for EFLAGS }
db 66h { popfd }
popf { copy to EFLAGS }
db 66h { pushfd }
pushf { push EFLAGS }
db 66h { pop eax }
pop ax { get new EFLAGS value }
db 66h { xor eax, ecx }
xor ax, cx
mov ax, i486CPU { turn on i486 flag }
je @@End_CpuType { if ID bit cannot be changed, CPU=486 }
{ without CPUID instruction functionality }
{ Execute CPUID instruction to determine vendor, family, }
{ model and stepping. The use of the CPUID instruction used }
{ in this program can be used for B0 and later steppings }
{ of the P5 processor. }
db 66h { mov eax, 1 }
mov ax, 1 { set up for CPUID instruction }
dw 0
db 66h { cpuid }
db 0Fh { Hardcoded opcode for CPUID instruction }
db 0a2h
db 66h { and eax, 0F00H }
and ax, 0F00H { mask everything but family }
dw 0
db 66h { shr eax, 8 }
shr ax, 8 { shift the cpu type down to the low byte }
sub ax, 1 { subtract 1 to map to TCpuType }
@@End_CpuType:
pop ds
end;
{ Get the Windows Flags to check for 286. The 286 assembly code
crashes due to a problem when using with Delphi Forms on some machines. This
method is safer.
}
procedure TForm1.FormCreate(Sender: TObject);
begin
winFlags := GetWinFlags;
end;
{ Call the CPU function and assign it to the Edit box }
procedure TForm1.BitBtn1Click(Sender: TObject);
begin
Edit1.Text := GetCPUType;
end;
end.
{This code came from Lloyd's help file!}