https://bigflake.com/mediacodec/#EncodeDecodeTest
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.media.cts;
import android.graphics.Bitmap;
import android.graphics.SurfaceTexture;
import android.media.MediaCodec;
import android.media.MediaExtractor;
import android.media.MediaFormat;
import android.opengl.EGL14;
import android.opengl.EGLConfig;
import android.opengl.EGLContext;
import android.opengl.EGLDisplay;
import android.opengl.EGLSurface;
import android.opengl.GLES11Ext;
import android.opengl.GLES20;
import android.opengl.Matrix;
import android.os.Environment;
import android.test.AndroidTestCase;
import android.util.Log;
import android.view.Surface;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
//20131122: minor tweaks to saveFrame() I/O
//20131205: add alpha to EGLConfig (huge glReadPixels speedup); pre-allocate pixel buffers;
// log time to run saveFrame()
//20140123: correct error checks on glGet*Location() and program creation (they don't set error)
//20140212: eliminate byte swap
/**
* Extract frames from an MP4 using MediaExtractor, MediaCodec, and GLES. Put a .mp4 file
* in "/sdcard/source.mp4" and look for output files named "/sdcard/frame-XX.png".
* <p>
* This uses various features first available in Android "Jellybean" 4.1 (API 16).
* <p>
* (This was derived from bits and pieces of CTS tests, and is packaged as such, but is not
* currently part of CTS.)
*/
public class ExtractMpegFramesTest extends AndroidTestCase {
private static final String TAG = "ExtractMpegFramesTest";
private static final boolean VERBOSE = false; // lots of logging
// where to find files (note: requires WRITE_EXTERNAL_STORAGE permission)
private static final File FILES_DIR = Environment.getExternalStorageDirectory();
private static final String INPUT_FILE = "source.mp4";
private static final int MAX_FRAMES = 10; // stop extracting after this many
/** test entry point */
public void testExtractMpegFrames() throws Throwable {
ExtractMpegFramesWrapper.runTest(this);
}
/**
* Wraps extractMpegFrames(). This is necessary because SurfaceTexture will try to use
* the looper in the current thread if one exists, and the CTS tests create one on the
* test thread.
*
* The wrapper propagates exceptions thrown by the worker thread back to the caller.
*/
private static class ExtractMpegFramesWrapper implements Runnable {
private Throwable mThrowable;
private ExtractMpegFramesTest mTest;
private ExtractMpegFramesWrapper(ExtractMpegFramesTest test) {
mTest = test;
}
@Override
public void run() {
try {
mTest.extractMpegFrames();
} catch (Throwable th) {
mThrowable = th;
}
}
/** Entry point. */
public static void runTest(ExtractMpegFramesTest obj) throws Throwable {
ExtractMpegFramesWrapper wrapper = new ExtractMpegFramesWrapper(obj);
Thread th = new Thread(wrapper, "codec test");
th.start();
th.join();
if (wrapper.mThrowable != null) {
throw wrapper.mThrowable;
}
}
}
/**
* Tests extraction from an MP4 to a series of PNG files.
* <p>
* We scale the video to 640x480 for the PNG just to demonstrate that we can scale the
* video with the GPU. If the input video has a different aspect ratio, we could preserve
* it by adjusting the GL viewport to get letterboxing or pillarboxing, but generally if
* you're extracting frames you don't want black bars.
*/
private void extractMpegFrames() throws IOException {
MediaCodec decoder = null;
CodecOutputSurface outputSurface = null;
MediaExtractor extractor = null;
int saveWidth = 640;
int saveHeight = 480;
try {
File inputFile = new File(FILES_DIR, INPUT_FILE); // must be an absolute path
// The MediaExtractor error messages aren't very useful. Check to see if the input
// file exists so we can throw a better one if it's not there.
if (!inputFile.canRead()) {
throw new FileNotFoundException("Unable to read " + inputFile);
}
extractor = new MediaExtractor();
extractor.setDataSource(inputFile.toString());
int trackIndex = selectTrack(extractor);
if (trackIndex < 0) {
throw new RuntimeException("No video track found in " + inputFile);
}
extractor.selectTrack(trackIndex);
MediaFormat format = extractor.getTrackFormat(trackIndex);
if (VERBOSE) {
Log.d(TAG, "Video size is " + format.getInteger(MediaFormat.KEY_WIDTH) + "x" +
format.getInteger(MediaFormat.KEY_HEIGHT));
}
// Could use width/height from the MediaFormat to get full-size frames.
outputSurface = new CodecOutputSurface(saveWidth, saveHeight);
// Create a MediaCodec decoder, and configure it with the MediaFormat from the
// extractor. It's very important to use the format from the extractor because
// it contains a copy of the CSD-0/CSD-1 codec-specific data chunks.
String mime = format.getString(MediaFormat.KEY_MIME);
decoder = MediaCodec.createDecoderByType(mime);
decoder.configure(format, outputSurface.getSurface(), null, 0);
decoder.start();
doExtract(extractor, trackIndex, decoder, outputSurface);
} finally {
// release everything we grabbed
if (outputSurface != null) {
outputSurface.release();
outputSurface = null;
}
if (decoder != null) {
decoder.stop();
decoder.release();
decoder = null;
}
if (extractor != null) {
extractor.release();
extractor = null;
}
}
}
/**
* Selects the video track, if any.
*
* @return the track index, or -1 if no video track is found.
*/
private int selectTrack(MediaExtractor extractor) {
// Select the first video track we find, ignore the rest.
int numTracks = extractor.getTrackCount();
for (int i = 0; i < numTracks; i++) {
MediaFormat format = extractor.getTrackFormat(i);
String mime = format.getString(MediaFormat.KEY_MIME);
if (mime.startsWith("video/")) {
if (VERBOSE) {
Log.d(TAG, "Extractor selected track " + i + " (" + mime + "): " + format);
}
return i;
}
}
return -1;
}
/**
* Work loop.
*/
static void doExtract(MediaExtractor extractor, int trackIndex, MediaCodec decoder,
CodecOutputSurface outputSurface) throws IOException {
final int TIMEOUT_USEC = 10000;
ByteBuffer[] decoderInputBuffers = decoder.getInputBuffers();
MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
int inputChunk = 0;
int decodeCount = 0;
long frameSaveTime = 0;
boolean outputDone = false;
boolean inputDone = false;
while (!outputDone) {
if (VERBOSE) Log.d(TAG, "loop");
// Feed more data to the decoder.
if (!inputDone) {
int inputBufIndex = decoder.dequeueInputBuffer(TIMEOUT_USEC);
if (inputBufIndex >= 0) {
ByteBuffer inputBuf = decoderInputBuffers[inputBufIndex];
// Read the sample data into the ByteBuffer. This neither respects nor
// updates inputBuf's position, limit, etc.
int chunkSize = extractor.readSampleData(inputBuf, 0);
if (chunkSize < 0) {
// End of stream -- send empty frame with EOS flag set.
decoder.queueInputBuffer(inputBufIndex, 0, 0, 0L,
MediaCodec.BUFFER_FLAG_END_OF_STREAM);
inputDone = true;
if (VERBOSE) Log.d(TAG, "sent input EOS");
} else {
if (extractor.getSampleTrackIndex() != trackIndex) {
Log.w(TAG, "WEIRD: got sample from track " +
extractor.getSampleTrackIndex() + ", expected " + trackIndex);
}
long presentationTimeUs = extractor.getSampleTime();
decoder.queueInputBuffer(inputBufIndex, 0, chunkSize,
presentationTimeUs, 0 /*flags*/);
if (VERBOSE) {
Log.d(TAG, "submitted frame " + inputChunk + " to dec, size=" +
chunkSize);
}
inputChunk++;
extractor.advance();
}
} else {
if (VERBOSE) Log.d(TAG, "input buffer not available");
}
}
if (!outputDone) {
int decoderStatus = decoder.dequeueOutputBuffer(info, TIMEOUT_USEC);
if (decoderStatus == MediaCodec.INFO_TRY_AGAIN_LATER) {
// no output available yet
if (VERBOSE) Log.d(TAG, "no output from decoder available");
} else if (decoderStatus == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
// not important for us, since we're using Surface
if (VERBOSE) Log.d(TAG, "decoder output buffers changed");
} else if (decoderStatus == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
MediaFormat newFormat = decoder.getOutputFormat();
if (VERBOSE) Log.d(TAG, "decoder output format changed: " + newFormat);
} else if (decoderStatus < 0) {
fail("unexpected result from decoder.dequeueOutputBuffer: " + decoderStatus);
} else { // decoderStatus >= 0
if (VERBOSE) Log.d(TAG, "surface decoder given buffer " + decoderStatus +
" (size=" + info.size + ")");
if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
if (VERBOSE) Log.d(TAG, "output EOS");
outputDone = true;
}
boolean doRender = (info.size != 0);
// As soon as we call releaseOutputBuffer, the buffer will be forwarded
// to SurfaceTexture to convert to a texture. The API doesn't guarantee
// that the texture will be available before the call returns, so we
// need to wait for the onFrameAvailable callback to fire.
decoder.releaseOutputBuffer(decoderStatus, doRender);
if (doRender) {
if (VERBOSE) Log.d(TAG, "awaiting decode of frame " + decodeCount);
outputSurface.awaitNewImage();
outputSurface.drawImage(true);
if (decodeCount < MAX_FRAMES) {
File outputFile = new File(FILES_DIR,
String.format("frame-%02d.png", decodeCount));
long startWhen = System.nanoTime();
outputSurface.saveFrame(outputFile.toString());
frameSaveTime += System.nanoTime() - startWhen;
}
decodeCount++;
}
}
}
}
int numSaved = (MAX_FRAMES < decodeCount) ? MAX_FRAMES : decodeCount;
Log.d(TAG, "Saving " + numSaved + " frames took " +
(frameSaveTime / numSaved / 1000) + " us per frame");
}
/**
* Holds state associated with a Surface used for MediaCodec decoder output.
* <p>
* The constructor for this class will prepare GL, create a SurfaceTexture,
* and then create a Surface for that SurfaceTexture. The Surface can be passed to
* MediaCodec.configure() to receive decoder output. When a frame arrives, we latch the
* texture with updateTexImage(), then render the texture with GL to a pbuffer.
* <p>
* By default, the Surface will be using a BufferQueue in asynchronous mode, so we
* can potentially drop frames.
*/
private static class CodecOutputSurface
implements SurfaceTexture.OnFrameAvailableListener {
private ExtractMpegFramesTest.STextureRender mTextureRender;
private SurfaceTexture mSurfaceTexture;
private Surface mSurface;
private EGLDisplay mEGLDisplay = EGL14.EGL_NO_DISPLAY;
private EGLContext mEGLContext = EGL14.EGL_NO_CONTEXT;
private EGLSurface mEGLSurface = EGL14.EGL_NO_SURFACE;
int mWidth;
int mHeight;
private Object mFrameSyncObject = new Object(); // guards mFrameAvailable
private boolean mFrameAvailable;
private ByteBuffer mPixelBuf; // used by saveFrame()
/**
* Creates a CodecOutputSurface backed by a pbuffer with the specified dimensions. The
* new EGL context and surface will be made current. Creates a Surface that can be passed
* to MediaCodec.configure().
*/
public CodecOutputSurface(int width, int height) {
if (width <= 0 || height <= 0) {
throw new IllegalArgumentException();
}
mWidth = width;
mHeight = height;
eglSetup();
makeCurrent();
setup();
}
/**
* Creates interconnected instances of TextureRender, SurfaceTexture, and Surface.
*/
private void setup() {
mTextureRender = new ExtractMpegFramesTest.STextureRender();
mTextureRender.surfaceCreated();
if (VERBOSE) Log.d(TAG, "textureID=" + mTextureRender.getTextureId());
mSurfaceTexture = new SurfaceTexture(mTextureRender.getTextureId());
// This doesn't work if this object is created on the thread that CTS started for
// these test cases.
//
// The CTS-created thread has a Looper, and the SurfaceTexture constructor will
// create a Handler that uses it. The "frame available" message is delivered
// there, but since we're not a Looper-based thread we'll never see it. For
// this to do anything useful, CodecOutputSurface must be created on a thread without
// a Looper, so that SurfaceTexture uses the main application Looper instead.
//
// Java language note: passing "this" out of a constructor is generally unwise,
// but we should be able to get away with it here.
mSurfaceTexture.setOnFrameAvailableListener(this);
mSurface = new Surface(mSurfaceTexture);
mPixelBuf = ByteBuffer.allocateDirect(mWidth * mHeight * 4);
mPixelBuf.order(ByteOrder.LITTLE_ENDIAN);
}
/**
* Prepares EGL. We want a GLES 2.0 context and a surface that supports pbuffer.
*/
private void eglSetup() {
mEGLDisplay = EGL14.eglGetDisplay(EGL14.EGL_DEFAULT_DISPLAY);
if (mEGLDisplay == EGL14.EGL_NO_DISPLAY) {
throw new RuntimeException("unable to get EGL14 display");
}
int[] version = new int[2];
if (!EGL14.eglInitialize(mEGLDisplay, version, 0, version, 1)) {
mEGLDisplay = null;
throw new RuntimeException("unable to initialize EGL14");
}
// Configure EGL for pbuffer and OpenGL ES 2.0, 24-bit RGB.
int[] attribList = {
EGL14.EGL_RED_SIZE, 8,
EGL14.EGL_GREEN_SIZE, 8,
EGL14.EGL_BLUE_SIZE, 8,
EGL14.EGL_ALPHA_SIZE, 8,
EGL14.EGL_RENDERABLE_TYPE, EGL14.EGL_OPENGL_ES2_BIT,
EGL14.EGL_SURFACE_TYPE, EGL14.EGL_PBUFFER_BIT,
EGL14.EGL_NONE
};
EGLConfig[] configs = new EGLConfig[1];
int[] numConfigs = new int[1];
if (!EGL14.eglChooseConfig(mEGLDisplay, attribList, 0, configs, 0, configs.length,
numConfigs, 0)) {
throw new RuntimeException("unable to find RGB888+recordable ES2 EGL config");
}
// Configure context for OpenGL ES 2.0.
int[] attrib_list = {
EGL14.EGL_CONTEXT_CLIENT_VERSION, 2,
EGL14.EGL_NONE
};
mEGLContext = EGL14.eglCreateContext(mEGLDisplay, configs[0], EGL14.EGL_NO_CONTEXT,
attrib_list, 0);
checkEglError("eglCreateContext");
if (mEGLContext == null) {
throw new RuntimeException("null context");
}
// Create a pbuffer surface.
int[] surfaceAttribs = {
EGL14.EGL_WIDTH, mWidth,
EGL14.EGL_HEIGHT, mHeight,
EGL14.EGL_NONE
};
mEGLSurface = EGL14.eglCreatePbufferSurface(mEGLDisplay, configs[0], surfaceAttribs, 0);
checkEglError("eglCreatePbufferSurface");
if (mEGLSurface == null) {
throw new RuntimeException("surface was null");
}
}
/**
* Discard all resources held by this class, notably the EGL context.
*/
public void release() {
if (mEGLDisplay != EGL14.EGL_NO_DISPLAY) {
EGL14.eglDestroySurface(mEGLDisplay, mEGLSurface);
EGL14.eglDestroyContext(mEGLDisplay, mEGLContext);
EGL14.eglReleaseThread();
EGL14.eglTerminate(mEGLDisplay);
}
mEGLDisplay = EGL14.EGL_NO_DISPLAY;
mEGLContext = EGL14.EGL_NO_CONTEXT;
mEGLSurface = EGL14.EGL_NO_SURFACE;
mSurface.release();
// this causes a bunch of warnings that appear harmless but might confuse someone:
// W BufferQueue: [unnamed-3997-2] cancelBuffer: BufferQueue has been abandoned!
//mSurfaceTexture.release();
mTextureRender = null;
mSurface = null;
mSurfaceTexture = null;
}
/**
* Makes our EGL context and surface current.
*/
public void makeCurrent() {
if (!EGL14.eglMakeCurrent(mEGLDisplay, mEGLSurface, mEGLSurface, mEGLContext)) {
throw new RuntimeException("eglMakeCurrent failed");
}
}
/**
* Returns the Surface.
*/
public Surface getSurface() {
return mSurface;
}
/**
* Latches the next buffer into the texture. Must be called from the thread that created
* the CodecOutputSurface object. (More specifically, it must be called on the thread
* with the EGLContext that contains the GL texture object used by SurfaceTexture.)
*/
public void awaitNewImage() {
final int TIMEOUT_MS = 2500;
synchronized (mFrameSyncObject) {
while (!mFrameAvailable) {
try {
// Wait for onFrameAvailable() to signal us. Use a timeout to avoid
// stalling the test if it doesn't arrive.
mFrameSyncObject.wait(TIMEOUT_MS);
if (!mFrameAvailable) {
// TODO: if "spurious wakeup", continue while loop
throw new RuntimeException("frame wait timed out");
}
} catch (InterruptedException ie) {
// shouldn't happen
throw new RuntimeException(ie);
}
}
mFrameAvailable = false;
}
// Latch the data.
mTextureRender.checkGlError("before updateTexImage");
mSurfaceTexture.updateTexImage();
}
/**
* Draws the data from SurfaceTexture onto the current EGL surface.
*
* @param invert if set, render the image with Y inverted (0,0 in top left)
*/
public void drawImage(boolean invert) {
mTextureRender.drawFrame(mSurfaceTexture, invert);
}
// SurfaceTexture callback
@Override
public void onFrameAvailable(SurfaceTexture st) {
if (VERBOSE) Log.d(TAG, "new frame available");
synchronized (mFrameSyncObject) {
if (mFrameAvailable) {
throw new RuntimeException("mFrameAvailable already set, frame could be dropped");
}
mFrameAvailable = true;
mFrameSyncObject.notifyAll();
}
}
/**
* Saves the current frame to disk as a PNG image.
*/
public void saveFrame(String filename) throws IOException {
// glReadPixels gives us a ByteBuffer filled with what is essentially big-endian RGBA
// data (i.e. a byte of red, followed by a byte of green...). To use the Bitmap
// constructor that takes an int[] array with pixel data, we need an int[] filled
// with little-endian ARGB data.
//
// If we implement this as a series of buf.get() calls, we can spend 2.5 seconds just
// copying data around for a 720p frame. It's better to do a bulk get() and then
// rearrange the data in memory. (For comparison, the PNG compress takes about 500ms
// for a trivial frame.)
//
// So... we set the ByteBuffer to little-endian, which should turn the bulk IntBuffer
// get() into a straight memcpy on most Android devices. Our ints will hold ABGR data.
// Swapping B and R gives us ARGB. We need about 30ms for the bulk get(), and another
// 270ms for the color swap.
//
// We can avoid the costly B/R swap here if we do it in the fragment shader (see
// http://stackoverflow.com/questions/21634450/ ).
//
// Having said all that... it turns out that the Bitmap#copyPixelsFromBuffer()
// method wants RGBA pixels, not ARGB, so if we create an empty bitmap and then
// copy pixel data in we can avoid the swap issue entirely, and just copy straight
// into the Bitmap from the ByteBuffer.
//
// Making this even more interesting is the upside-down nature of GL, which means
// our output will look upside-down relative to what appears on screen if the
// typical GL conventions are used. (For ExtractMpegFrameTest, we avoid the issue
// by inverting the frame when we render it.)
//
// Allocating large buffers is expensive, so we really want mPixelBuf to be
// allocated ahead of time if possible. We still get some allocations from the
// Bitmap / PNG creation.
mPixelBuf.rewind();
GLES20.glReadPixels(0, 0, mWidth, mHeight, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE,
mPixelBuf);
BufferedOutputStream bos = null;
try {
bos = new BufferedOutputStream(new FileOutputStream(filename));
Bitmap bmp = Bitmap.createBitmap(mWidth, mHeight, Bitmap.Config.ARGB_8888);
mPixelBuf.rewind();
bmp.copyPixelsFromBuffer(mPixelBuf);
bmp.compress(Bitmap.CompressFormat.PNG, 90, bos);
bmp.recycle();
} finally {
if (bos != null) bos.close();
}
if (VERBOSE) {
Log.d(TAG, "Saved " + mWidth + "x" + mHeight + " frame as '" + filename + "'");
}
}
/**
* Checks for EGL errors.
*/
private void checkEglError(String msg) {
int error;
if ((error = EGL14.eglGetError()) != EGL14.EGL_SUCCESS) {
throw new RuntimeException(msg + ": EGL error: 0x" + Integer.toHexString(error));
}
}
}
/**
* Code for rendering a texture onto a surface using OpenGL ES 2.0.
*/
private static class STextureRender {
private static final int FLOAT_SIZE_BYTES = 4;
private static final int TRIANGLE_VERTICES_DATA_STRIDE_BYTES = 5 * FLOAT_SIZE_BYTES;
private static final int TRIANGLE_VERTICES_DATA_POS_OFFSET = 0;
private static final int TRIANGLE_VERTICES_DATA_UV_OFFSET = 3;
private final float[] mTriangleVerticesData = {
// X, Y, Z, U, V
-1.0f, -1.0f, 0, 0.f, 0.f,
1.0f, -1.0f, 0, 1.f, 0.f,
-1.0f, 1.0f, 0, 0.f, 1.f,
1.0f, 1.0f, 0, 1.f, 1.f,
};
private FloatBuffer mTriangleVertices;
private static final String VERTEX_SHADER =
"uniform mat4 uMVPMatrix;\n" +
"uniform mat4 uSTMatrix;\n" +
"attribute vec4 aPosition;\n" +
"attribute vec4 aTextureCoord;\n" +
"varying vec2 vTextureCoord;\n" +
"void main() {\n" +
" gl_Position = uMVPMatrix * aPosition;\n" +
" vTextureCoord = (uSTMatrix * aTextureCoord).xy;\n" +
"}\n";
private static final String FRAGMENT_SHADER =
"#extension GL_OES_EGL_image_external : require\n" +
"precision mediump float;\n" + // highp here doesn't seem to matter
"varying vec2 vTextureCoord;\n" +
"uniform samplerExternalOES sTexture;\n" +
"void main() {\n" +
" gl_FragColor = texture2D(sTexture, vTextureCoord);\n" +
"}\n";
private float[] mMVPMatrix = new float[16];
private float[] mSTMatrix = new float[16];
private int mProgram;
private int mTextureID = -12345;
private int muMVPMatrixHandle;
private int muSTMatrixHandle;
private int maPositionHandle;
private int maTextureHandle;
public STextureRender() {
mTriangleVertices = ByteBuffer.allocateDirect(
mTriangleVerticesData.length * FLOAT_SIZE_BYTES)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangleVertices.put(mTriangleVerticesData).position(0);
Matrix.setIdentityM(mSTMatrix, 0);
}
public int getTextureId() {
return mTextureID;
}
/**
* Draws the external texture in SurfaceTexture onto the current EGL surface.
*/
public void drawFrame(SurfaceTexture st, boolean invert) {
checkGlError("onDrawFrame start");
st.getTransformMatrix(mSTMatrix);
if (invert) {
mSTMatrix[5] = -mSTMatrix[5];
mSTMatrix[13] = 1.0f - mSTMatrix[13];
}
// (optional) clear to green so we can see if we're failing to set pixels
GLES20.glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
GLES20.glUseProgram(mProgram);
checkGlError("glUseProgram");
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, mTextureID);
mTriangleVertices.position(TRIANGLE_VERTICES_DATA_POS_OFFSET);
GLES20.glVertexAttribPointer(maPositionHandle, 3, GLES20.GL_FLOAT, false,
TRIANGLE_VERTICES_DATA_STRIDE_BYTES, mTriangleVertices);
checkGlError("glVertexAttribPointer maPosition");
GLES20.glEnableVertexAttribArray(maPositionHandle);
checkGlError("glEnableVertexAttribArray maPositionHandle");
mTriangleVertices.position(TRIANGLE_VERTICES_DATA_UV_OFFSET);
GLES20.glVertexAttribPointer(maTextureHandle, 2, GLES20.GL_FLOAT, false,
TRIANGLE_VERTICES_DATA_STRIDE_BYTES, mTriangleVertices);
checkGlError("glVertexAttribPointer maTextureHandle");
GLES20.glEnableVertexAttribArray(maTextureHandle);
checkGlError("glEnableVertexAttribArray maTextureHandle");
Matrix.setIdentityM(mMVPMatrix, 0);
GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
GLES20.glUniformMatrix4fv(muSTMatrixHandle, 1, false, mSTMatrix, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
checkGlError("glDrawArrays");
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, 0);
}
/**
* Initializes GL state. Call this after the EGL surface has been created and made current.
*/
public void surfaceCreated() {
mProgram = createProgram(VERTEX_SHADER, FRAGMENT_SHADER);
if (mProgram == 0) {
throw new RuntimeException("failed creating program");
}
maPositionHandle = GLES20.glGetAttribLocation(mProgram, "aPosition");
checkLocation(maPositionHandle, "aPosition");
maTextureHandle = GLES20.glGetAttribLocation(mProgram, "aTextureCoord");
checkLocation(maTextureHandle, "aTextureCoord");
muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
checkLocation(muMVPMatrixHandle, "uMVPMatrix");
muSTMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uSTMatrix");
checkLocation(muSTMatrixHandle, "uSTMatrix");
int[] textures = new int[1];
GLES20.glGenTextures(1, textures, 0);
mTextureID = textures[0];
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, mTextureID);
checkGlError("glBindTexture mTextureID");
GLES20.glTexParameterf(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_MIN_FILTER,
GLES20.GL_NEAREST);
GLES20.glTexParameterf(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_MAG_FILTER,
GLES20.GL_LINEAR);
GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_WRAP_S,
GLES20.GL_CLAMP_TO_EDGE);
GLES20.glTexParameteri(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, GLES20.GL_TEXTURE_WRAP_T,
GLES20.GL_CLAMP_TO_EDGE);
checkGlError("glTexParameter");
}
/**
* Replaces the fragment shader. Pass in null to reset to default.
*/
public void changeFragmentShader(String fragmentShader) {
if (fragmentShader == null) {
fragmentShader = FRAGMENT_SHADER;
}
GLES20.glDeleteProgram(mProgram);
mProgram = createProgram(VERTEX_SHADER, fragmentShader);
if (mProgram == 0) {
throw new RuntimeException("failed creating program");
}
}
private int loadShader(int shaderType, String source) {
int shader = GLES20.glCreateShader(shaderType);
checkGlError("glCreateShader type=" + shaderType);
GLES20.glShaderSource(shader, source);
GLES20.glCompileShader(shader);
int[] compiled = new int[1];
GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compiled, 0);
if (compiled[0] == 0) {
Log.e(TAG, "Could not compile shader " + shaderType + ":");
Log.e(TAG, " " + GLES20.glGetShaderInfoLog(shader));
GLES20.glDeleteShader(shader);
shader = 0;
}
return shader;
}
private int createProgram(String vertexSource, String fragmentSource) {
int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexSource);
if (vertexShader == 0) {
return 0;
}
int pixelShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentSource);
if (pixelShader == 0) {
return 0;
}
int program = GLES20.glCreateProgram();
if (program == 0) {
Log.e(TAG, "Could not create program");
}
GLES20.glAttachShader(program, vertexShader);
checkGlError("glAttachShader");
GLES20.glAttachShader(program, pixelShader);
checkGlError("glAttachShader");
GLES20.glLinkProgram(program);
int[] linkStatus = new int[1];
GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, linkStatus, 0);
if (linkStatus[0] != GLES20.GL_TRUE) {
Log.e(TAG, "Could not link program: ");
Log.e(TAG, GLES20.glGetProgramInfoLog(program));
GLES20.glDeleteProgram(program);
program = 0;
}
return program;
}
public void checkGlError(String op) {
int error;
while ((error = GLES20.glGetError()) != GLES20.GL_NO_ERROR) {
Log.e(TAG, op + ": glError " + error);
throw new RuntimeException(op + ": glError " + error);
}
}
public static void checkLocation(int location, String label) {
if (location < 0) {
throw new RuntimeException("Unable to locate '" + label + "' in program");
}
}
}
}